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i. In describing the process of high-temperature creep of metals, the conception of 
mechanical equations of state [i] has acquired great acceptance, wherein the creep strain 
rate tensor Pij is determined by running values of the stress tensor oij, the temperature T 
and a set of structural parameters ql, q2,..�9 

Plj = P~j(ahz, T, ql, q~ ..... qn)" (i. I) 

The change in the structural parameters qi characterizing the running inner state of the 
material is described by a system of kinetic equations of the form 

ql = q~(~hz' T, ql, q~ ..... q~). (1.2) 

Under a definite specification of the parameters ql, q2,...,qn the relationships (i.i) and 
(1.2) permit the description of different effects of the creep process (hardening, soften- 
ing, etc.) and the creep strength of metals [1-3]. Rupture criteria based on a certain 
structural parameter (the damage parameter) reaching its limit value at the time t, of rup- 
ture take account just of the kinetics of the development of such a parameter (1.2) while 
leaving aside the creep process (i.i) itself. 

Different experimental results indicate that the creep and cumulative damage processes 
are interconnected [1-3]. From the thermodynamic viewpoint there are elements of a single 
process, energy dissipation�9 An energetic modification of creep and creep strength theories 
is developed in [4, 5] in which the specific power of energy dissipation W = oij~i j was 
chosen as the measure of the creep process intensity and the specific energy dissipation 

t 

S A(t)= a~jp~dt as the measure of the damage. However, identification of the creep and cumula- 
0 

rive damage processes occurred by virtue of the specifics of selecting the measure of the 
damage. Moreover, the balance relationship of the first law of thermodynamics shows that 
part of A(t) goes towards a change in the internal energy of the body while the rest is dis- 
sipated in the form of heat [6]. Consequently, it would not be true to select all of A(t) 
as the measure of material damage. It is more natural to take the internal energy density 
u0(t) as such a measure, for which the kinetic equation is the first law of thermodynamics 
[7] 

uo = ~f~l q- ~jPiJ -- q~j, ( I. 3) 

where el4 is the elastic strain tensor and qi is the heat flux vector. As rupture criterion 
for the ~olume element dV 0 we select the condition that its internal energy density u0(t) 
reach its limit value u, which is a constant of the material [8]. Successful application 
of the energetic rupture criterion in strength of materials (energetic or fourth theory of 
strength [9]), linear fracture mechanics [i0], and fatigue [ii] indicates the promise of such 
a selection. 

2. In the empirical approach to the rupture problem from the aspect of the energetic 
rupture criterion [ii], the work AA performed on a body is usually determined by the o-e 
diagram and the quantity of heat delivered to the body AQ is found by calorimetric measure- 
ments. Consequently AU = AA + AQ found at the time of rupture for different test conditions 
permits confirmation of the correctness of the original hypothesis AU = const and finding 
the limit value u, for this material. 

In the phenomenological approach [8] it is first necessary to make the structural para- 
meters ql, q2,---,qn specific and to formulate correctly the governing relationships (i.i) 
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and (1.2). The fundamental structural changes occurring in a metal under creep condition 
are related to the motion of dislocations and the generation and development of pores [i-3]. 
The presence of dislocations in a body can be reflected with the use of the dislocation den- 
sity tensor ~!j (akk = 0) [6], and pore generation and development by using the damage tensor 
~ij [12]. Simultaneous utilization of two tensor variables is fraught with significant com- 
plexity for the experimental determination of the parameters of the governing relationships 
(i.i) and (1.2). Consequently, in place of the tensor flij of its invariants ~ that reflects 
the bulk pore density in the material [12] and is analogous to the magnitude of the plastic 
loosening of Novozhilov [13] will be used later. 

Therefore, to describe th e creep process in metals the dependence of the free energy 
density ~0 on the thermodynamic variables eij, T and the structural parameters =ij, ~ must 
be given as must also the kinetics of the creep process (I.i) and the change in structure 
(1.2) be described. The structural parameter ~ij, in contrast to ~, exerts no influence on 
the elastic properties of the material, consequently the dependence ~0(eij, T, ~ij, ~) is 
representable in the form 

% = ~ K (r, co) (%k) ~ + ~ (r, ~) ~F~i - ~v (r - to) ~ (r, co) e~h - 
- -  cT In (T/to) + (c - -  %0 (%' ~)) (r  - -  To) + @oo (%' e) .  ( 2 . 1 )  

, t 
Here e{j-----eij---'~ekkSij is the deviator of the tensor eij, K(T, to) and B(T, to) are elastic moduli, 

aV is the coefficient of volume expansion, c is the specific heat, ~00(= e, e), s00(=e,~) are the 
I 2 \1/2 values of %(e~p 2, ~i' ~) and So = --O~dOT for eij = 0 and T = To, and ae=~-~ ~ija~j ] is the in- 

tensity of the tensor aij" The first and second laws of thermodynamics [14] result in gen- 
eralized Hooke.'s law relationships for the effective stress tensor 

%/(1 - -  ~) = K (%~ - -  =v (r  - - Y 0 ) ) '  o ~ / ( l  - -  co) = 2~e~$ ( 2 . 2 )  

i ? 

[ % = - ~ a a  i s  t h e  g l o b a l ,  and o i i=o~ i - -%3  U t h e  d e v i a t o r  p a r t  o f  t h e  t e n s o r  o i j ,  w h i l e  o e = 

o~fl~l i s  i t s  i n t e n s i t y ]  and t h e  P l a n c k  i n e q u a l i t y  f o r  t h e  d i s s i p a t i o n  d e n s i t y  

�9 ( ~176 / " ~176 " 

The p r e s e n c e  o f  p o r e s  in  t h e  m a t e r i a l  r e s u l t s  i n  vo lume  c r e e p  whose r a t e  I~kk i s  p r o p o r -  
t i o n a i  t o  t h e  r a t e  o f  c h a n g e  o f  t h e  p a r a m e t e r  w [ 1 2 ] ,  i . e . ,  

Pa~ = coco (2.4) 

(c o is a certain scalar function of eij, T, ~ij, and to). Taking account of (2.4) and (2.2), 
we represent the inequality (2.3) in the standard form for thermodynamics of irreversible 

processes of the product of thermodynamic fluxes [p~, ai~, ~} and their conjugate thermodynamic 
forces %, Y}: 

o ~ . ,  X " + Y ~ > O ,  ( 2 . 5 )  Do ~ i ~ co Pij -{- ij~i~ 

�9 I �9 " % ~ ; o  
where  p~'~ = ? ~ j - - ~ p ~ G ~  i s  t h e  d e v i a t o r  o f  t h e  t e n s o r  p~g; X u =  -- ~0/0~g; Y =  % ~ _  ~ ~ �9 We r e p r e -  

s e n t  the relationships (I.i) and (1.2) in the form of a linear tensor relation between the 
forces and fluxes, which taking account of the Onsager reciprocity relationships [15], we 
write as 

t 

p,j=" cl "~ q- esX~j; 
t 

~ij = c2 ~ + %Xw 

(2.6) 

(2.7) 

[o = cJ. ( 2 . 8 )  

The inequality (2.5) imposes the constraints r > 0, c3 > 0, cac.~-- r 0, r > 0 on the functions 

c I, c 2, c~, c~, dependent on oij/(l - m), T, aij, and to. The relationships (2.6) and (2.7) 
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for ~ = 0 permit the description of the fundamental regularities of the hardening process 
during creep under complex stress state conditions [6]. Inclusion of the parameter ~ in the 
composition of the internal variables permits their extension in a natural manner to the 
case of weakening [8]. The dependence of Y on o 0 and o e emphasizes the influence of both 
the global and deviator parts of the tensor oij on the bulk creep process. The dependence 
of a e in Y indicates the definite contribution of the dislocation motion to the process of 
pore generation and development in a metal. 

Assuming [6] that the function cz, c2, and c 3 depend only on Oe/(l - ~) and representing 
%0~ e, ~) as %0(%, ~)= h(~)=~, we obtain from (2.7) 

i ( %  / % ('-~) 
2 (2.9) 

0 

Approximating (2.8) by the relationship [I] ~=A( ~* I m kl--ml ,~(0)=0' where ~i= X% +3(I--X)% 

is the equivalent stress [8], we have for ~(t) 

(t) = ~ - ( l  - A (~ + ~) ~ 0  ~/(~+~). ( 2 . 1 0  ) 

Two characteristic time scales, the "short" time t s = k% , governing the extent of the 

hardening process and being a constant in many cases [16], and the "long" time t~ = [Ao~] -z 
governing the extent of the weakening process are present in (2.9) and (2.10). As a rule, 
these times are separated strongly on the time scale. Consequently, for t ~ t s the influence 
of ~ can be neglected in (2.9) 

2 =. (o = y ~  (~,) o,,, (~ - - t / , , ) ,  ( 2 . 1 1 )  

while for t >> t s we can write for the hardening stage and a power-law approximation of the 

function c2(o e) = Co~ 

2r .k+z ,  [ t=i--( t--~(0)m-k] (2.12) 
% ( 0 -  3 ~ ., i + - f [ ,  ~ z ~  �9 

It follows from (2.12) that ae(t) that characterizes the reverse creep of the material [6] 
grows in the third stage of creep [17]. Therefore, the kinetic relationships (2.7) and (2.8) 
for the structural parameters =ij and ~ permit the description of many effects of the creep 
in both the first [6] and third stages of creep [8]. 

3. The rupture condition u0(t ~) = u,, taking the relationships u 0 = ~0 - T3~0/3T, (2.1) 
and (2.2), into account is representable in the form 

0F 
( ~o / ~ + ~ - r ~ ' (  ~ ~ ~o ( 3 . 1 )  

'2K \ i - -~, /  6~ ~i-----~-~,) +a r t  t----~-~, +Uoo(%*' =*)+c(T--ro):==* 

[Ka~(T 2 - T~) as compared with c(T - T O ) and the influence of the temperature T on K, ~V and 
c [18] are neglected in writing (3.1)]. The expression (3.1) relates the level of the thermo- 
stress state of the body at the time of rupture with its structural state characterized by 
%, = % ( t , ) ,  ~ ,  = ~ ( t , ) .  

An estimate of the theoretical strength of the material in shear ~, = ~2Fu./(I--T~F'IF) 

~2F=.(l--T0/Tm), obtained under the assumption of linear elastic strain up to the time of 
rupture at a constant temperature and without a change in structure as well as for the ap- 
proximation 

~' ~ ~ ~ ( r ~ ) - ~ ( r 0 )  ~(ro) 
='-f2-~'E'2 -~ r~ -- r 0 ~ -- r~ -- r------~' 

fo l lows  from (3 .1)  (T m i s  the  m a t e r i a l  me l t i ng  p o i n t ) .  Taking in to  account  t h a t  

2K \ i - - ~ , /  ] 6~ ~ \ i - - ~ , /  ~ ' - ~ 0 , i ,  

and neglecting the contribution from ~ into %0(%*' ~*) ' we write condition (3.1) for the 
isothermal case in the form 
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Fig.  I 
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Fig.  3 

( o,I~, ~ %IS + u00 (~,,) 
~_-~,j +~_-~, ~ - i .  (3.2) 

Here o, = ~ ,  is the theoretical strength of material to rupture, and S = u,/~vT is the 
strength of the material to multilateral breakage. 

For a low stress level there results from (3.2) and (2.12) that the rupture condition 
u0(t ,) = u, can be satisfied only because of growth of the parameter ~, which takes on the 
value m, ~ i at the time of rupture. The time to rupture t,, found from (2.10), will be 
determined by the equivalent stress ci: 

t,=[A(m+1)o?]-z. (3.3) 

The form of the isochronic creep strength curves (the curves t, = const) on the plane of 
the principal stresses (cz, a 2) depends on the parameter X in the expression for ~ Figure 
I shows the isochronic curve for X = 0.75 and the experimental data for a number of steels 
and alloys obtained in [19] and corresponding to X = 0.75. The condition ~, ~ i means that 
the nature of the rupture is determined by the pore generation and development process (brittle 
fracture by the growth and merger of pores along the grain boundaries [20]). 

As the stress level grows, the influence of the third component starts to be felt most 
substantially in condition (3.2) because of the nonlinear dependence (2.12) of ~e on ~ 
Consequently, we write condition (3.2) for a rise of stress as 

a e (t,) = =,, (3.4) 

where a, is the limit value of the dislocation density tensor intensity. Condition (3.4) 
means that the nature of the rupture starts to change and be determined by the dislocation 
slip mechanism (mixed rupture by generation of intergranular microcracks at the juncture of 
three grains [20]). 

For instantaneous rupture, when t, = O, m, = 0 and o e ~ o,, the strength condition 

%o (%*) /~*  = i - -  % ~ ,  ( 3 . 5 )  

analogous to the condition of Novozhilov and Rybakina [9], results from (3.2). It is taken 
into account in (3.5) that the instantaneous plastic strains are also of dislocation nature 
and depend on the tensor ~ij. The appearance of instantaneous plastic strains in the material 
is associated with the presence of slip planes therein. Therefore, the nature of the rupture 
becomes viscous, large irreversible strains resulting in the origination of intergranular 
shear microcracks [20]. 

For a given tensor oij the relationship (3.2) can be viewed as an equation to find m, 
corresponding to a given stress level at the time of rupture. A schematic graph of the de- 

pendence of i - m, on ~ is shown in Fig. 2 where 1-3 are the conditional zones of brittle, 
mixed, and viscous fracture. Condition (3.2) is much too complex for its practical utiliza- 
tion. We select the condition [21] 

~e/( I -- ~*)= ~! (3.6) 

as a sufficiently simple approximation of (3.2) that reflects all the features listed above 
for the change in the nature of the rupture for a rise in the stress level, where of is a 
certain limit stress, generally a function of o e or t, and varying between o, (for a low 
stress level and large times to rupture) to the instantaneous strength limit o b for instan- 
taneous rupture. 
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Expressing the value of ~, corresponding to this stress level from (3.6), we find the 
time to rupture from (2.10) 

I -- (I -- ~,)~+* i -- (%/~i) ~+* 
t, - -  _ ( 3 . 7 )  

A(m+ I) ~ A(m+i)o~ " 

When processing experimental data in a narrow range of stress variation, of can be considered 
constant and it can be found by experimental creep and creep strength results [22]. When 
extrapolating the experimental data to a broader range of variation of the stress it is neces- 
sary to take account of the dependence af(ae) or of(t,) and any of the approximations of 
these functions can be used. 

Integration of the relationships (2.6) with condition (3.6) taken into account permits 

finding the creep strain intensity Pe = Pi~P~j) at the time of rupture 

( t~ ) l_(%/~l)m+*-~m+i_n (3.8) pc. (~) = =,+ =~ + ~t~ �9 

The method of determining the material parameters A, m, B, n, B 0, n o , and of for a power-law 

approximation ~(%)=B~, as(ae)=Bo~o , the form of the creep strength curves t,(o) and the de- 
pendence p,(o) in the uniaxial case as well as an analysis of the experimental creep and 
creep strength data for a number of steels and alloys are represented in [22]. 

For a step loading in the uniaxial case the criterion (3.6) describes the deviation from 
the rule of linear summation of the partial times [i]. Indeed, as the stress o changes from 
o I into 02 at the time to, the damage m for t > t o has the form (i -- m)m+*= i -- t~t, -- (t -- to)/t2 , 

where t, =[A (m + l) o~] -z and t2=[A(m+l)o~]-*. Replacing t z by t,l and t 2 by t,2 according to 
(3.7), we obtain from condition (3.6) 

t ,  - -  t o ] - -  (Ol /Of)  ~ + *  tO ( 3 . 9 )  

t , :  1 - -  (a2101)~+I t**  

The dependence of (t, - t0)/t,2 on t0/t,z for o z < o 2 and o z > o 2 (curves i and 2) is shown 
in Fig. 3. It is seen that the curve 1 does not reach the point (I, 0), i.e., growth of the 
load in the concluding stage of the creep process can result in instantaneous rupture. An 
analogous effect is described in [13]. 

In the case of a complex stress state reconstruction of the isochronic creep strength 
curve occurs from the curve o i = const for ~, ~ 1 (creep rupture at low stresses) to the 
curve o e = const for m, ~ 0 (instantaneous rupture) [21]. Such a reconstruction was observed 
experimentally in [23]. 

4. Analyzing the energetic rupture criterion as a whole, we turn to (3.1) for the in- 
ternal energy density. As we see, u 0 is separated into three components, the internal energy 

' ~ ~e )2 00 I o0 ?+ density for thermoelastic strain -~\!_ ~ , I  the internal energy 

density associated with the formation of the dislocation structure %0(%,,~,), and the thermal 
component of the internal energy density c(T - To). For the instantaneous rupture of metals 
under isothermal conditions the principal part is played by the second component that re- 
flects the multiplication of dislocations occurring during loading and its associated in- 
elastic strain process. The pore development during creep results in a change in the elastic 
characteristics of the material whereupon the first component starts to be felt and, in a 
number of cases, even plays the principal part. And finally, a specific kind of rupture, 
melting, is possible when the third component in the expression for u 0 plays the main part 
and governs the "rupture" process. 

Analyzing other rupture criteria from the aspect of the energetic, it can be noted that 
microstructural rupture criteria of the type ~(t,) = I or =e(t,) = =, emphasize the impor- 
tance of the structural changes during rupture. The role and place of the dissipative rup- 
ture criterion are seen clearly from the energy conservation law (1.3). The parameter A(t) 
yields a definite contribution to the total internal energy u0(t) but it is taken into ac- 
count completely only for an adiabatic process. For an isothermal creep process, a definite 
part of A(t) is liberated in the form of heat outward and exerts no influence at all on u0(t). 

Therefore, the internal energy density u0(t) can be selected as a certain damage macro- 
parameter for a volume element dV 0 that takes account of structural changes occurring in a 

948 



material, the heat conduction process, etc. By using it the phenomenon of creep strength of 
metals can be described under creep conditions in the whole range of load variation up to in- 
stantaneous rupture. The achievement of u0(t) in the volume element dU o of its limit value 
u, denotes rupture of this volume, i.e., the transition of all points of dV 0 from the volume 
to the surface state. The energetic balance of such a transition is [i0] 

% = ~ + Aj (4.1) 

(uf is the internal energy density in the rupture state, Af is the work of rupture) and per- 
mits estimation of the characteristic linear dimension Ps of theruptured volume dV0. Indeed 
[8], neglecting uf as compared with u, and assuming that all the work Af goes into the forma- 
tion of two n~w surfaces of discontinuity of the displacement dS 0 with surface energy density 
Y, we have from (4.1) 

u*dVo = 2?dSo" ( 4 . 2 )  

4 3 2 
Estimating dVoN--~p s, dSo~P~,  we obtain from (4.2) 

p, ~ ~lu,. ( 4 . 3 )  

Assuming 7 a new characteristic of the material [I0] governing the capacity of the material 
to resist crack origination together with the stiffness (K, p), thermal (~V, c) and strength 
(u,, o b) properties, the characteristic linear dimension of the ruptured volume dV 0 can be 
estimated from (4.3)~ In this case the condition u0(t,) = u, becomes the necessary and suf- 
ficient rupture criterion, the condition u 0 < u, means that all points of the volume dV 0 of 
characteristic dimension Ps would go over into the surface state and a crack dS 0 would be 
generated in the volume dV 0 . The material turned out to be equipped by a "lattice" of the 
characteristic dimension Ps which does not take part in finding the stress-strain state in 
the unruptured state but determines the scale of spatial discretization with respect to the 
rupture phenomenon. Experimentally u, can be determined on smooth specimens but y (or its 
related ps ) only in specimens with stress concentrators in the time of crack break-out [2!] 
or in the rupture viscosity Kic [10]. The nature of further crack propagation from the as- 
pect of the energetic rupture criterion is investigated in [21]. 
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